Table of Contents

Introduction ..4
Activity One: What's Organic ..5-7
Activity Two: Decomposition Detectives ..8-10
Activity Three: Compost Construction ..11-12
Activity Four: Investigate Soils of the Garden ...13-16
Activity Five: Compost & Company ...17

The Compost Cycle

Introduction to the Compost Cycle

- Sunlight
- Water
- Nutrients
- Organic Matter
- Compost Creatures
- New Growth
The Compost Science Investigation activity book offers a series of observations and experiments, so students will learn the process of composting organic matter. This is a way that students can help the environment by reducing the amount of yard waste and food waste being thrown away in a landfill and by reducing the loss of nutrients that should remain in nature to be cycled.

The lessons can be used together or separately to compliment current classroom activities. Science indicators are listed below, and other indicators for social studies can be met with these activities as well.

COMPOST SCIENCE INVESTIGATION SCIENCE INDICATORS

<table>
<thead>
<tr>
<th>Grade</th>
<th>Indicator</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinder-garden</td>
<td>Earth</td>
<td>2</td>
<td>Explore that animals and plants cause changes to their surroundings.</td>
</tr>
<tr>
<td></td>
<td>Life</td>
<td>1</td>
<td>Explore difference between living and non-living things.</td>
</tr>
<tr>
<td></td>
<td>Science Ways of Knowing</td>
<td>3</td>
<td>Interact with living things and the environment in ways that promotes respect.</td>
</tr>
<tr>
<td></td>
<td>Science and Technology</td>
<td>1</td>
<td>Explore that objects can be sorted as "natural" or "man-made."</td>
</tr>
<tr>
<td>First</td>
<td>Earth</td>
<td>1</td>
<td>Identify that resources are things that we get from the living and nonliving environment and that resource are necessary to meet the needs and wants of a population.</td>
</tr>
<tr>
<td></td>
<td>Physical</td>
<td>4</td>
<td>Explain that all organisms cause changes in the environment where they live; the changes can be very noticeable or lightly noticeable, fast or slow.</td>
</tr>
<tr>
<td></td>
<td>Scientific Inquiry</td>
<td>4</td>
<td>Explore changes that greatly change the properties of an object and changes that leave the properties largely unchanged.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Work in a small group to complete an investigation and then share findings with others.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>Use oral, written and pictorial representations to communicate work.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Describe things as accurately as possible and compare with the observations of others.</td>
</tr>
<tr>
<td>Second</td>
<td>Life</td>
<td>4</td>
<td>Compare similarities and differences among individuals of the same kind of plants and animals, including people.</td>
</tr>
<tr>
<td></td>
<td>Scientific Ways of Knowing</td>
<td>3</td>
<td>Describe ways in which using the solution to a problem might affect other people and the environment.</td>
</tr>
<tr>
<td>Third</td>
<td>Earth</td>
<td>4</td>
<td>Observe and describe the composition of soil.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Investigate the properties of soil.</td>
</tr>
</tbody>
</table>
INTRODUCTION

Composting is a natural cycle like the seasons, day and night or the water cycle. Compost is made from once living things or organic matter such as dead leaves, flowers, grass, certain crops and wood. The cycle begins, when leaves, grasses and plants die and start to decompose. The sun, water and compost creatures are also needed to start the decomposition process. The organic matter as it decomposes releases nutrients that the plant absorbed or generated. The living plants and trees absorb the released minerals and nutrients from the compost, which creates the cycling of nutrients in nature.

Not only is compost made of once living matter, non-living matter is found in the compost. Soil, minerals and stones are non-living or inorganic matter. The rocks are not broken down by living creatures such as worms that work in the compost process. Instead, rocks erode into smaller and smaller bits of minerals or sand, silt or clay. For example, a stone erodes by weathering and an orange composts as it is consumed by insects and microorganisms.

Decomposition happens when the sun, water and compost creatures break down or decay organic matter such as leaves, flowers, seeds etc... For example, the leaves will be digested by compost creatures like insects, worms, bacteria, anticomycetes and fungi. Compost creatures' waste products are full of nutrients such as nitrogen, phosphorus and potassium and more that were once stored in the organic matter that they consumed. Just like when people eat food, the end waste product contains nutrients that were not absorbed by the stomach or intestines.

Compost improves soil health and helps plants to grow. Compost provides a larger surface and space for water and oxygen to attach, and it allows water to drain. Water is needed to help plants grow; however, if water does not drain, it can rot plants. Also, the compost creates spaces so roots can grow easily. Oxygen is needed for the aerobic bacteria as well as other compost creatures to survive. It is more difficult for a plant's roots to break through compacted soil, so they may not grow as fast or as large. This is partial why gardeners and farmers turn over or plow the soil before planting.

Compost provides nutrients to help plants grow. Compost contains unused nutrients from decomposed organic matter. When compost is applied to the soil, the nutrients are cycled back into the earth. Adding compost is like adding a vitamin to the soil as it is a natural fertilizer for gardens, flower pots and around trees. When plants need more nutrients to grow fast in the summer, the compost creatures are more active. They eat more decaying matter releasing more nutrients. In spring, the compost creatures are less active and thus, only produce small amount of nutrients for the plants.

Good, rich compost is usually dark brown to black, much darker than regular top soil because of all the decomposed organic matter. Observing compost with the naked eye or under a magnifying glass should reveals bits of twigs, leaves and seeds. The interior of the compost pile should be much warmer than the ground temperature of near by soil. A hot piles means the microorganisms are active. The optimal temperature for a compost pile is between 90˚F and 140˚ F. An active pile breaks down organic material easily and produces heat or energy and water.

Since organic matter accounts for 21% of the waste stream, composting is a solution to reduce waste going into Ohio landfills. Composting in your backyard or insuring grass clipping, leaves, brush and wood are composted by the city or a composting facility will benefit the environment. Composting conserves energy and natural resources, improves topsoil and soil health, conserves space in landfills, lowers the cost that a city pays for trash disposal and reduces the need for petroleum based fertilizers, which can harm humans, wildlife and pollute the water.

Start composting for a better earth.
Activity One: What's Organic?

Vocabulary
- Living (organic) - Comes from a living or once living organism; has characteristics of a living animal or plant; obtained from plant or animals source; contains carbon atoms.
- Non-living (inorganic) - Something that did not come from animals or plants; lacks carbon atoms like water.
- Natural - Not created or altered by humans; something from nature.
- Man-made - Something from nature that humans changed, created, constructed or manufactured.

Objective: Students will learn the difference between living (organic) and non-living (inorganic) natural resources and the difference between natural and man-made products.

Skills: Classifying, observing, comparing and describing.

Materials: Non-living objects: aluminum can, yogurt container, steel can, jewelry, rock, brick, glass and clay flower pot.

Living objects: Apple, squash, paper card, peanut butter, cotton cloth, dollar bill, fur coat/pelt, steak and goose down pillow or picture of fur, steak or goose feathers.

Procedure:
1. Discuss the differences between what make goods and products that humans use either living and non-living.
2. In a circle pass the living and non-living object around the room and ask a yes or no question about the object. When the group has figured out whether the object is living or non-living, then place it in the correct pile or create a list on the chalkboard.
3. As an option, have students complete the Oh...Organic! worksheet.
4. Repeat procedure two using the same objects, but categorize the products as natural or man-made.

Extension:
Use several packed lunches and discuss their contents of food and its packaging to draw connections about where the food originates. For example, lunch meat, chicken and ham are produced from animals raised on a farm. Potato chips, carrots and apples are crops grown on a farm. They are all organic products. The milk and paper or cloth napkin come from living sources. Common packaging around foods such as plastic or aluminum is non-living from oil or minerals.
<table>
<thead>
<tr>
<th>Product</th>
<th>Natural Resources</th>
<th>Living/Non-living</th>
<th>Natural/Man-made</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum can (metal)</td>
<td>Bauxite (mineral)</td>
<td>NL</td>
<td>MM</td>
</tr>
<tr>
<td>Steel can/car (metal)</td>
<td>Iron ore</td>
<td>NL</td>
<td>MM</td>
</tr>
<tr>
<td>Terra cotta flower pot</td>
<td>Clay</td>
<td>NL</td>
<td>MM</td>
</tr>
<tr>
<td>Plastic Container</td>
<td>Oil</td>
<td>NL</td>
<td>MM</td>
</tr>
<tr>
<td>Jewelry/coins (metal)</td>
<td>Mineral</td>
<td>NL</td>
<td>MM</td>
</tr>
<tr>
<td>Rock</td>
<td>Mineral</td>
<td>NL</td>
<td>N</td>
</tr>
<tr>
<td>Brick</td>
<td>Clay</td>
<td>NL</td>
<td>MM</td>
</tr>
<tr>
<td>Glass/mirror</td>
<td>Sand</td>
<td>NL</td>
<td>MM</td>
</tr>
<tr>
<td>Coal</td>
<td>Coal</td>
<td>NL</td>
<td>N</td>
</tr>
<tr>
<td>Salt</td>
<td>Mineral</td>
<td>NL</td>
<td>N</td>
</tr>
<tr>
<td>Apple/squash/grape</td>
<td>Crops</td>
<td>L</td>
<td>N</td>
</tr>
<tr>
<td>Peanut butter</td>
<td>Crop</td>
<td>L</td>
<td>MM</td>
</tr>
<tr>
<td>Paper money/ card</td>
<td>Tree</td>
<td>L</td>
<td>MM</td>
</tr>
<tr>
<td>Tire swing</td>
<td>Tree</td>
<td>L</td>
<td>MM</td>
</tr>
<tr>
<td>Wash/cotton cloth</td>
<td>Plant</td>
<td>L</td>
<td>MM</td>
</tr>
<tr>
<td>Wooden chair</td>
<td>Tree</td>
<td>L</td>
<td>MM</td>
</tr>
<tr>
<td>Leather coat</td>
<td>Cow</td>
<td>L</td>
<td>MM</td>
</tr>
<tr>
<td>Chicken/ Steak</td>
<td>Animals</td>
<td>L</td>
<td>N</td>
</tr>
<tr>
<td>Honey</td>
<td>Bee</td>
<td>L</td>
<td>N</td>
</tr>
<tr>
<td>Wool sweater</td>
<td>Sheep</td>
<td>L</td>
<td>MM</td>
</tr>
<tr>
<td>Goose down or fur coat</td>
<td>Animals</td>
<td>L</td>
<td>MM</td>
</tr>
</tbody>
</table>
Oh....Organic! Worksheet

Name: __________________________

Directions:
1. Circle the objects that are living (organic) and put a box around the objects that are non-living (inorganic).
2. Color the shape green for products that are grown or came from nature. Color the shape orange for products that are man-made.

Leather Coat Coins Wooden Chair Salt Chicken Wing

Wash Cloth Coal Tire Swing Paper Money Mirror

Grapes Sand Plastic Bottle Car
ACTIVITY TWO: DECOMPOSITION DETECTIVES

Vocabulary
- Cycles - A series of reoccurring events, events that reoccur regularly and usually lead back to the starting point.
- Decompose - The process of breaking down organic material into simple materials.

Objective: Students will observe how living and non-living materials decompose over time.

Skills: Observing, arranging, recording, cooperating, analyzing, drawing, sharing and comparing.

Materials: A large clear plastic bin or several smaller clear containers, marker, tape and soil.
Living materials: Banana peels, cornstarch noodle, bread, lettuce, leaves, cotton cloth or ball and notebook paper.
Non-living materials: Steel can, plastic bag, plastic cap, glass marble and aluminum foil.

Procedure:
1. Explain decomposition process through help from the lesson demonstrations.

2. Have students work on the Decomposition Cycle Sheet.

3. Prepare the bin by labeling a piece of tape with a living or non-living material's name placed 2-3 inches apart. A large bin can have multiple layers of testing materials lined along the edges.

4. Have students add soil and bury the materials as labeled. The materials should be visible from the outside of the bin. After students are finished making the decomposition bin have them wash their hands.

5. Have students observe one or more of the organic materials and the same number for non-living materials, and have them record initial observations on student observation sheet.

6. Have students record observations every week or two for several months.

7. At the end of the investigation, have students share their findings with the rest of the class and discuss the following questions:
 - Did any objects have fungi or mold growing on it?
 - How did the materials change in color, shape or size?
 - What are the physical changes to the organic matter?
 - What are the physical changes to the inorganic matter?
 - What materials may compost quicker than other materials that the class observed?
 - What materials may not be compostable?

Demonstration
1. Fill a clear pitcher of water and add sugar or flavored drink. Mix together to show that the sugar dissolves in the water. Pour each student a small glass and ask what it tastes like. The sugar is still there even if you cannot see it. Like the sugar, leaves, grass and some food are in compost, but maybe too small or broken down to tell the difference.

2. Hand each student a cornstarch packing or craft noodle. Have students tear their noodle into pieces. Ask them how the noodle has change? Fill a bowl with water and have students drop noodle pieces in a bowl of water. Like the sugar in water, the cornstarch noodles will vanish in water. This demonstrates the differences between an object that maintains its physical appearance compared to a large change in the appearance of an object. Also, it shows what would happen to organic materials if decomposition was accelerated at warp speed. For example, materials such as apples take 1-6 months to decompose where as wax paper cup takes 5 years and plastic and glass containers will never decompose.

Extension:
Use a non-compostable and non-recyclable plastic or light bulb for a craft project.

Since these materials do not decompose in the landfill, it becomes very important to reuse them.
Decomposition Cycle

Name: __________________________

Directions: Cut out the boxes and glue the pieces in the correct order of the decomposition cycle.
Decomposition Detectives

Directions:

Label each square with the material that you are observing and draw a picture of what it looks like.

LIVING

<table>
<thead>
<tr>
<th>Week</th>
<th>_________</th>
<th>Week</th>
<th>_________</th>
<th>Week</th>
<th>_________</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NON LIVING

<table>
<thead>
<tr>
<th>Week</th>
<th>_________</th>
<th>Week</th>
<th>_________</th>
<th>Week</th>
<th>_________</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ACTIVITY THREE: COMPOST CONSTRUCTION

Vocabulary

Compost - Material produced when micro-organisms break down organic matter; used as a soil conditioner.

Soil - Upper layer of earth made from organic matter and eroded rocks which make sand, silt and clay; a substance used to grow plants containing decomposers, oxygen and water.

Objective: Student will learn to construct a compost pile.

Skills: Observing, describing, recording, working cooperatively and drawing connections.

Materials: A large clear plastic bin, garden soil, compost, and tape, markers, garden gloves and shovels.

Green stuff or nitrogen: grass clipping, dead flowers, food, coffee grinds, manure. Brown stuff or carbon: leaves, needles, newspaper shredded, sawdust.

Procedure:

1. Label a large clear plastic bin as “compost pile.” Measure and label the layers of a compost in inches going upon the outside using tape and markers.

2. Have students work in groups to fill the compost pile bin with the proper amount of material.

3. Sprinkle with water, add the lid and place the bin near a window. After building the compost pile bin, have students wash their hands. Periodically, the lid should be opened to allow oxygen in the bin and add water to keep pile moist.

4. Every week or two have two students turn over compost pile by mixing the layers with shovels or other garden tools. If the pile is “cooking” or decomposing well more green materials can be added.

TIPS: To help dry an over watered pile, add sawdust, straw or wood chips.

If pile is too dry, then turn over and water.

If pile smells rotten, then turn pile, leave lid open by open window and add saw dust, straw, brown leaves or wood chips.

If pile is damp and sweet smelling and will not heat up, then it needs nitrogen, so add fresh grass clippings, manure, blood meal or urea fertilizer.

If pile smells like ammonia, then add brown leaves, sawdust, straw or wood chips.

5. Push a thermometer into the pile to keep a record of the pile’s temperature.

6. Have students record observations on the bin sheet and share their observations with the class.

7. Draw on the board or overhead the happy compost pile. Have students discuss if their compost pile is cooking and why or why not?

Extension:

1. Use compost to pot plants, grow seeds or for CSI activity four and five.

2. Have students copy the happy compost pile into a “recipe card” to be reproduced in their backyard.
Compost Construction/Student Observation Sheet

Directions: Fill in observations in the table when the compost pile is mixed.

<table>
<thead>
<tr>
<th>Date/Day</th>
<th>Student names</th>
<th>Temperature</th>
<th>Smell</th>
<th>Add anything?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ACTIVITY FOUR: INVESTIGATE SOILS OF THE GARDEN

Vocabulary

Clay - Soil made of very fine particles of minerals that can be tightly compacted, which creates a waterproof like seal.

Mulch - A protective covering usually made of shredded wood that keeps soil moist, controls weeds, prevents soil loss and maintains ground temperature.

Sand - Loose grainy material that is created when rocks erode.

Texture - How something feels.

Objective: Students will learn to distinguish compost, soil and mulch properties.

Skills: Observing, describing, classifying, analyzing and drawing connections.

Materials: Samples of mulch, compost, sand, clay and garden soil. Shovels, tubs or trays, magnifying glasses and spoons.

Procedure:
1. Discuss how students would use their five senses to describe materials and distinguish them by their properties.

2. Conduct the demonstrations on how different garden materials absorb water as one of the properties of soils, and/or have students color in water droplets and oxygen molecules on the Soils, Water and Oxygen student sheet.

3. Have students examine different types of gardening materials and fill out the Garden Soil’s Properties student sheet.

4. Discuss the differences between each material’s properties and why it is beneficial to a garden.

Demonstrations:
1. Soil has many properties such as it is able to absorb water like a sponge. Clay is very small, sand is larger and compost has the largest clumps. Label a small flower pot as sand, clay or compost. Fill the flower pots with a cup of sand, clay or compost. Pour one cup of water in each pot while the students count out loud to determine how fast the water reaches the bottom. Catch the water runoff in a measuring cup underneath, and have the students compare the amount of water from each pot. Ask the students where is the rest the water? The compost should have a slower water flow rate and will absorb more water than the clay or sand. Since clay is the smallest particle, it should have a faster water flow rate than sand or compost.

2. Soil is made up of clay, silt and sand which are different sizes. Compost actually clumps as a large sized particles. Use a basketball as compost, soft ball as sand and golf ball as clay. Tell the students that their hands are water droplets. How many of them can be touching each ball at once. Or have students put stickers on softball as compost, golf ball as sand and marble as clay. The stickers represent water droplets, and have the students count them to determine which soil holds the most water. Compost has the largest surface area to attract the most water molecule.

Extension:
Add 2-3 seeds to each pot and observe how plants grow.
Soils, Water and Oxygen

Directions:
Color in water droplets 🌧️ and oxygen molecules 🌪️ in each picture.

Questions
1. Which pot has the most room for water?
3. Which pot has the least room for water?
2. Which pot has the most room for oxygen?
4. Which pot has the least room for oxygen?
Directions:

1. Look, smell, feel each of the materials and circle one or two words that best describe each material.

<table>
<thead>
<tr>
<th>Color</th>
<th>Feel</th>
<th>Smell</th>
<th>Shape</th>
<th>Size</th>
<th>Look</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Soil</td>
<td>tan</td>
<td>smooth rough smooth</td>
<td>musky</td>
<td>round square</td>
<td>big pieces</td>
</tr>
<tr>
<td>light brown</td>
<td>slimly</td>
<td>fruity</td>
<td>even sized</td>
<td>small pieces</td>
<td>pieces look different</td>
</tr>
<tr>
<td>dark brown</td>
<td>gritty</td>
<td>nutty</td>
<td>uneven sized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>black</td>
<td>soft</td>
<td>pine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>red</td>
<td>hard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mulch</td>
<td>tan</td>
<td>smooth rough smooth</td>
<td>musky</td>
<td>round square</td>
<td>big pieces</td>
</tr>
<tr>
<td>light brown</td>
<td>slimly</td>
<td>fruity</td>
<td>even sized</td>
<td>small pieces</td>
<td>pieces look different</td>
</tr>
<tr>
<td>dark brown</td>
<td>gritty</td>
<td>nutty</td>
<td>uneven sized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>black</td>
<td>even sized small pieces</td>
<td>pieces look different</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>red</td>
<td>pieces look different</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compost</td>
<td>tan</td>
<td>smooth rough smooth</td>
<td>musky</td>
<td>round square</td>
<td>big pieces</td>
</tr>
<tr>
<td>light brown</td>
<td>slimly</td>
<td>fruity</td>
<td>even sized</td>
<td>small pieces</td>
<td>pieces look different</td>
</tr>
<tr>
<td>dark brown</td>
<td>gritty</td>
<td>nutty</td>
<td>uneven sized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>black</td>
<td>even sized small pieces</td>
<td>pieces look different</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>red</td>
<td>pieces look different</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>tan</td>
<td>smooth rough smooth</td>
<td>musky</td>
<td>round square</td>
<td>big pieces</td>
</tr>
<tr>
<td>light brown</td>
<td>slimly</td>
<td>fruity</td>
<td>even sized</td>
<td>small pieces</td>
<td>pieces look different</td>
</tr>
<tr>
<td>dark brown</td>
<td>gritty</td>
<td>nutty</td>
<td>uneven sized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>black</td>
<td>even sized small pieces</td>
<td>pieces look different</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>red</td>
<td>pieces look different</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>tan</td>
<td>smooth rough smooth</td>
<td>musky</td>
<td>round square</td>
<td>big pieces</td>
</tr>
<tr>
<td>light brown</td>
<td>slimly</td>
<td>fruity</td>
<td>even sized</td>
<td>small pieces</td>
<td>pieces look different</td>
</tr>
<tr>
<td>dark brown</td>
<td>gritty</td>
<td>nutty</td>
<td>uneven sized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>black</td>
<td>even sized small pieces</td>
<td>pieces look different</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>red</td>
<td>pieces look different</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Describe in a sentence what each material is like and what it is used for in a garden.

3. Answer the questions below:

 How is top soil and compost similar?

 Does sand and clay feel the same or different?

 How are clay and sand different?
ACTIVITY FIVE: COMPOST & COMPANY

Vocabulary

Microorganisms - Organisms that can only be seen through a microscope such as bacteria, fungi, actinomycetes and amoebas.

Macro organisms - Creatures that are visible to the eye.

Insects - Organisms with three pair of legs.

Fungus - A plant that lives off of other living things, lacks chlorophyll and reproduces by spores.

Bacteria - A single celled, rod or spherical shaped organism that lacks chlorophyll.

Amoeba - A freshwater or marine parasite.

Actinomycetes - A branch like bacteria found in soil and some of which can be harmful to humans and animals.

Objective: Students will investigate soil, compost and mulch for compost creatures and identify their role in a compost pile.

Skills: Observing, describing, recording

Materials: Aluminum trays, spoons, magnifying glasses, critter cards

Procedure:

1. Set up stations for groups of three or four students to search for critters in soil, compost and mulch. Use compost from activity three.

2. Review the compost critter cards, so students are familiar with the creatures.

3. Have students split into groups and work on discovering creatures on the checklist.

4. Have students create a story or drawing that describes the compost critter's job in a compost pile.

Extension:

1. Grow classroom compost creatures like a worm bin to compost veggie and fruit lunch leftovers.

2. Have each student become one of the compost creatures and have the class connect to each other as they interact (eat or be eaten by) with each other using yarn to create a compost web.
Creature Checklist

Name: _______________________

Micro organisms (bacteria, fungi, actinomycetes and amoeba) will be in each of the samples, but you will not be able to see them.

Directions:
1. Slowly move around the material with a spoon to find compost creatures.
2. Use magnifying glass to identify the creature and mark the correct box.

<table>
<thead>
<tr>
<th>Compost Creature</th>
<th>Soil</th>
<th>Mulch</th>
<th>Compost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centipede</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crickets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darkling Beetle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earthworm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flatworms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feather Wing Beetle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground Beetle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Millipede</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potworms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudoscorpions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Worm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotifera</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roundworm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rove beetle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sow Bug</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Springtail</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Compost Critter Cards

Centipede
- **Food:** Live insects, small animals
- **Live:** Damp places

Opossum
- **Food:** Insects, snails, rodents, beetles, grubs, carrion, small animals, dead animals, frogs and toads, birds and their eggs, fruits, vegetables and garbage
- **Live:** Wooded area

Sow Bug
- **Food:** Plants, rotting plants and animals (omnivores/scavenger)
- **Live:** Damp place under rocks, logs or in leaf litter
- **Good:** Food source for many animals and insects. Improves soil a little.

Red Worms
- **Food:** Organic material, decomposing animals, manure
- **Live:** Soil
- **Good:** Add oxygen and mix soil. Eat large amounts of organic material

Millipede
- **Food:** Plants, rotting organic matter, leaves, wood
- **Live:** Dark, damp outer layer of compost heap or under rocks, logs
- **Good:** Food source for many animals and insects. Improves soil a little.

Fungi
- **Food:** Plants
- **Live:** In soil, on plants and roots
- **Good:** Eaten by other animals and it can charge hard to digest organic material into forms that other organisms can use.
Compost Critter Cards

Rove Beetle

Food: Carrion feeding and pest insects, snails, slugs

Live: Near decaying animal and plant matter, leaf litter, rotting logs

Good: Generalist predators

Ant

Food: Live or dead insects, nectar, honey dew (generalists)

Live: Surface layer of soil, almost finished compost pile

Good: Most important predator of small invertebrates, dispense seeds, mix and aerate soil. Food for toads, lizards, spiders, bats and birds.

Roundworm (Nematodes)

Food: Dead organic matter, bacteria fungi, plants, algae, ameobas

Live: Soil

Good: Control disease and cycle nutrients

Mite

Food: Decaying matter, fungi, manure

Live: Everywhere, soil, even on parasites

Good: Scrub bacteria and fungi off plant roots

Fly

Food: Sugary food, nectar, rotting fruit

Live: Garbage, manure, decaying animals and meat

Good: Help eat and eliminate dead animals, converts what is eaten to soil and pollinates some flowers. Eaten by birds

Ground Beetle

Food: Other insects

Live: On the ground under rocks, logs, leaves, bark, decomposing wood and other ground debris

Good: Predator
BACTERIA

Food: Carrion feeding and pest insects, snails, slugs

Live: Everywhere in soil, plants and animals

Good: Generate heat and releases nutrients in soil

ACTINOMYCETES

Food: Leaves and other organics (Decomposer)

Live: Near decaying matter

ROVE BEETLE

Food: Spores of fungi in rotten wood, litter and dung

Live: Compost pile

Good: Droppings nourish pile

ACTINOMYCETES

Food: Potworms, roundworms and other microorganisms

Live: Moist soil, leaf litter or compost pile

FEATHER-WINGED BEETLE

Food: Decaying leaves, sticks, grain and grass, dead insects

Live: Under rocks, logs, carrion, compost pile

Good: Turn organic matter to soil. Eaten by predator beetles, rodents, Lizards, spiders and birds.

PREDATORY MITE

Food: Organic matter, soil, attached bacteria and fungi

Live: Soil, compost

Good: Create nutrients and aerate soil
Critter Cards

Compost Science Investigation

<table>
<thead>
<tr>
<th>Critter</th>
<th>Food</th>
<th>Live</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crickets</td>
<td>Organic matter, decaying plants, fungi, seedling plants</td>
<td>Under rocks and logs</td>
<td>Breaks down plant material to renew soil minerals. Eaten by spiders, wasps, ground</td>
</tr>
<tr>
<td>Amoeba</td>
<td>Decaying plants, other amoeba, fungi, bacteria</td>
<td>Soil, everywhere</td>
<td>Release nitrogen to be used by plants and other organisms</td>
</tr>
<tr>
<td>Pseudoscorpions</td>
<td>Roundworms, springtails, ants, mites, small flies</td>
<td>Mulch, moss, leaf litter, under stones and tree bark, in manure</td>
<td>Predator of microscopic animals living in soil, leaf litter and bark</td>
</tr>
<tr>
<td>Snail/Slug</td>
<td>Garden plants, vegetables, decaying plants and soil</td>
<td>Surface layer of soil and compost pile</td>
<td></td>
</tr>
<tr>
<td>Springtail</td>
<td>Nematodes, decaying matter, fungi, manure, bacteria</td>
<td>Moist places with soil, leaf litter and compost</td>
<td></td>
</tr>
<tr>
<td>Potworms (White)</td>
<td>Organic matter, soil, attached bacteria and fungi</td>
<td>Damp compost or soil</td>
<td></td>
</tr>
</tbody>
</table>
Organic: Leaves, grass clipping, plants, weeds, nuts, straw, flowers, fruits, vegetables, bread, wood ashes or shavings, egg shells, coffee or tea grounds, sawdust, lint, shredded paper/paper towel

Activator: Animal manure, blood meal or compost.
Soil
Water
Air

Microorganisms. Bacteria and fungi do most of the decomposition and they need a warm, moist environment to work well.

Note: bury food under 8 inches of soil, compost, leaves, straw or sawdust.

Compost: Latin words com meaning together and post meaning to bring.
The Compost Bin Song

(Tune: I’m a Little Tea Pot)

Here is the Compost
Here is the Lid
I wonder whatever inside is hid?
Why it’s a slug
Without any doubt
Open the lid and let it slide out.

I’m a Little Earthworm

(Tune: I’m a Little Tea Pot)

I’m a little earthworm
Under ground
Munching on dead leaves
That I have found
When the ground fills up
With spring rain
Out I pop
To breath again.

Compost Resources

www.dnr.state.wi.us/org/caer/ce/eeek/cool/natrec.htm
slide show on composting aggie-horticulture.tamu.edu/sustainable/slidesets/kidscompost/kid4.html
http://place.scholastic.com/magicschoolbus/games/teacher/rot/index.htm, along with story Rot Squad
http://cmcmnet.columbia.edu/dept/physio/schools/318/compost.html
www.kidsgardening.com/Dig/DigDetail.taf?ID=1152&Type=Art
http://compostingcouncil.org/index.cfm

Insect Resources

www.urbanext.uiuc.edu/insects/index.html

Soil Resources

Cuyahoga County Soil and Water Conservation District, 216-524-6580.

Other Environmental Guidebooks

Sharing A Small World: Environmental Activities for Young Learners - download through Teacher PET Project
Taking Care of Nature’s Resources, download through Hamilton County Solid Waste District

Cuyahoga County Solid Waste District

323 Lakeside Avenue West, Suite 400
Cleveland, Ohio 44113
216-443-3749 • 216-443-3733 Fax • www.cuyahogaswd.org

Make It a Habit: Reduce Reuse Recycle

Jimmy Dimora Peter Lawson Jones Timothy F. Hagan
Commissioner Commissioner Commissioner

1/05